
IEEE Computer Graphics and Applications September 1996 21

Most rendering algorithms

deliberately employ

approximations and other

shortcuts for efficiency.

These economies—not

coding errors—produce

characteristic image artifacts.

This article classifies the

best-known varieties.

rtifacts of rendering, though often
treated on a case-by-case basis, have
not yet been treated as a class. We

propose the non-exhaustive taxonomy shown in Table 1.
Each category is treated at greater length in the following
sections, and some workarounds are provided.

Surface acne
When ray tracing, you are intersecting rays with

surfaces to determine visibility. The hit distance from the
ray origin must be larger than some positive ε to qualify as
a hit.1 Otherwise, floating-point precision problems can
cause secondary rays (such as reflection, refraction, and
shadow rays) to self-intersect incorrectly.2 For example,
when this ε is not applied to shadow rays, incorrect self-
shadowing causes small black dots (often referred to as
surface acne) to appear on the surface. However, even
using the ε check does not totally eliminate this problem.
Black dots are still likely to occur when the shadow ray is
very close to being perpendicular to the surface normal N.
Then, as in Figure 1 (p. 22), no reasonable ε value can
eliminate the incorrect self-shadowing if the intersection

point with the viewing ray is
off by just a little. Numerical
inaccuracy of those
intersection points can result
from single-precision
floating-point math, or a far-
away hit distance t.

To elaborate on the cause of numerical instability in the latter
case, let the intersection point be O + tD, where O is the ray
origin and D is the ray direction. Then a large t value multiplied
with D (normalized) can result in a numerically unstable answer.

An effective workaround to this problem is available for planar
polygons. You can adjust the intersection point for the viewing
ray, x, to sit much closer to the visible polygon by shooting a ray
in the reverse direction of the original ray, that is, x - t'D, and
intersecting only against the plane on which the polygon resides.
Thus the standard ray-plane intersection equations will serve: t' =
(d - N • x)/(-N •D), where N • P = d defines the planar equation of
the polygon.

The better intersection point; x' = x - t'D, should be used as the
start point to shoot second-generation rays. The point x' provides
a numerically stable solution, since t' and D are very small, and a
subtraction from x with a small number will be numerically stable
as well.

Figure 2 (p. 22) illustrates an example of surface acne, where
the middle of the sphere contains black dots due to improper
shadowing from a point light far to the right of the sphere. (For
more images showing the surface acne artifacts, and more general
proposals to alleviate this problem, refer to Amanatides and
Mitchell.3) The ugly-looking black polygons will be explained
next as part of the terminator problem.

A

It's Really Not aIt's Really Not aIt's Really Not aIt's Really Not a
Rendering Bug,Rendering Bug,Rendering Bug,Rendering Bug,
You See…You See…You See…You See… Andrew Woo and Andrew Pearce

Alias-Wavefront

Marc Ouellette
University of Toronto

Table 1. Taxonomy of rendering artifacts.

Name Symptoms Underlying Cause
Surface acne Black dots Grazing ray reintersection
Terminator problem Black Blotches Improper self-shadowing
Phong vs. Phong Misshapen annulus Confusion in terminology
Separation of diffuse and
specular reflection Misshapen annulus

Spatial misalignment of
components

Nature of mirror reflections Misshapen annulus Incorrect expectation of
symmetry

Visiblity inconsistency Color confusion Mixed dominance of two
surfaces

Naïve texture interpolation Warped textures Naïve linear interpolation

IEEE Computer Graphics and Applications September 1996 22

1 Likelihood of
surface acne
artifacts.

2 Surface acne
and terminator
problem.

3 Terminator
problem.

4 Unusual T-
shaped
highlight
pattern.

Terminator problem
The terminator problem4 results from improper self-

shadowing due to planar-polygon approximation of smooth
surfaces. This problem extends to mirror reflection,
refraction, and Gouraud shading,5 but we will discuss only
the shadowing problem in any detail.

In Figure 3, polygons A and B represent polygonal
approximations to the smooth surface region. At point x on
polygon A, the vertex-interpolated normal N' (instead of the
planar normal N) is used to compute illumination. Since N' •
L > 0, light contribution is present, and shadow occlusion
must be computed to determine whether x is shadowed. The
shadow ray for point x intersects polygon B and incorrectly
concludes that x is in self-shadow. Use point x', which
represents the correct intersection point on the actual surface,
to avoid this problem (but x' is not easily computable).

The ugly black polygons around the shadow boundaries in
Figure 2 are an example of terminator problem artifacts. Their
most common formation is a stair-step pattern.

Note that terminator problem artifacts occur in most
shadow algorithms to varying degrees. You can reduce the
size of the artifacts through finer tessellation of the surface (if
the data is available).

Snyder and Barr4 provided a workaround to compute x' that
sometimes handles convex surfaces. The basic idea is to
introduce a positive ε value along N that can allow the
intersection point to escape the self-shadowing. The selection
of ε, however, is user driven. If the value is too small, the
problem persists; if the value is too large, then some regions
can be incorrectly illuminated instead of shadowed.

Phong versus Phong

At least two very confusing issues exist for the models
Phong proposed in his famous paper.6 First, two variations
exist for what has often been called the Phong reflection
model: one from the original paper by Phong and the other
proposed by Blinn.7 The specular highlights from the two
models can look very different. An approximation relating the
two models can be derived,8 but even this approximation
cannot possibly yield matching results in all situations.

Also confusing, Phong actually proposed two ideas in the
same paper. One is the above reflection model; the other is
commonly known as Phong shading. Phong shading refers to
the technique of vertex normal (linear) interpolation. The term
"shading" is often carelessly employed in computer graphics
to indicate (among other things) some sort of interpolation;
for example, Gouraud shading means vertex color
interpolation. It might be worthwhile to stop using the term
"shading" as applied to Phong or Gouraud shading and use
the term "interpolation" instead.

The distinction between a reflection model and an
interpolation model is very important. This distinction permits
many combinations for surface rendering, such as using
Gouraud interpolation with the Phong reflection model,
Phong interpolation with the Phong reflection model, or
Phong interpolation with Blinn's reflection models.7

Separation of diffuse and specular reflection

In Figure 4, the planar floor is illuminated by a single point
light placed slightly above the floor. Based on expectations of
the Phong reflection model,6 a rendering of this floor should

IEEE Computer Graphics and Applications September 1996 23

contain a single circular highlight, not the T-shaped highlight
seen in the figure.

Figure 4 when rerendered produced Figure 5, a rendering
with the specular component set to 0, and Figure 6, a
rendering with the diffuse component set to 0. Clearly, the
T-shaped highlight results from combining specular and
diffuse highlights that happen to be located at different
positions. The simple superposition of the disjoint specular
and diffuse components results in the odd highlight shape.
Summation of the different components is common in
computer graphics, so it is surprising that this artifact is not
better known.

Another artifact results from segmenting the diffuse and
specular components, as shown in Figure 7. Note that the
highlight ends very abruptly, instead of smoothly dying off.
This abrupt change and the (black) boundary occur because
the diffuse evaluation indicates no light reaching it (that is, N •
L < 0), but the specular evaluation still has some light
contribution. Since N • L is the primary indicator of light
reaching the point, the specular contribution is ignored in the
illumination. Note that this artifact exists for most specular
models, though Figure 7 is rendered using the Phong
reflection model.6

Nature of mirror reflections

Mirror reflections are a main benefit of ray tracing.1 With
mirror reflections about planar surfaces you would expect
symmetry, so Figure 8 might be puzzling. Note that the
highlight shape, size, and location on the actual sphere are
very different when mirrored in the two walls.

Reflective symmetry does not apply to specular highlights,
since they are view dependent. In the case of reflection rays,
mirrored specular highlights become reflection-ray dependent
(that is, the reflection ray is the viewing ray in this case)
according to Whitted's illumination model.1 Thus specular
highlights are rarely symmetric when mirrored. In addition,
the highlights reflected can depend on the polarization of light
as well (see Wolf and Kurlander9).

Visibility inconsistency

In all approaches to determining visibility,
the goal is to compute the closest visible
surface. However, surfaces can be very close
to each other in depth and still produce
inconsistent visibility winners. Deciding on a
consistent visibility winner can be tricky-so
much so that most visibility implementations
do not bother with the issue.

One scenario in which the lack of a
consistent visibility winner causes a big
problem occurs when coincident surfaces
have different colors assigned (see the sphere
in Figure 9, p. 24). Without a strategy for
determining a consistent visibility winner,
such collisions arbitrarily choose the winner
from pixel to pixel, which in most cases
produces a mix of both objects' colors and a
resulting color confusion.

5 Unusual
highlight
pattern with
diffuse
highlights only.

6 Unusual
highlight
pattern with
specular
highlights only.

7 Highlight
cutoff.

8 Incorrect
mirror reflection
expectations.

IEEE Computer Graphics and Applications September 1996 24

9 Incorrect
visibility
determination.

10 Uneven
quadrilateral.

11 Poor texture
interpolation.

course, is to raise those surfaces marginally
Another scenario where problems arise appears in Figure
9, where the partially transparent box and cylinder sit
exactly on the floor. Thus the bottoms of those surfaces
collide exactly with the floor, and weird artifacts occur
when the scene is rendered. The easy way to resolve this, of

above the floor.

Note that this visibility problem can also be
caused by a more serious numerical problem
instead of the exact depth issue. If the near
clipping plane used in a non-ray-tracing
environment is very small, the numerical
precision for the surface depth in perspective
space can be compromised easily. Then the
perspective depth can result in incorrect
visibility answers, which would also result in
the artifacts already shown. Fortunately, most
renderers permit user input into clipping plane
values.

Naive texture
interpolation

Texture mapping adds interesting features to an otherwise
matte surface. To texture-map polygons, common practice
associates a (u, v) coordinate with each polygon vertex. This
(u, v) is the index into the texture map. The (u, v) for any
region inside the polygon is usually computed by linearly
interpolating the vertices' (u, v) coordinates, a process easily
done for a three-sided polygon (the triangle).

Assuming interpolation in 3D space, linear interpolation of
disproportionate triangle sizes can cause warping artifacts.
(We are not talking about interpolation in the wrong space.
Some papers10,11 have discussed interpolation in perspective
space that can result in bad warping artifacts. This is actually
a coding and logic error, and can be alleviated by employing
hyperbolic interpolation11 or by interpolating in 3D space.)

For example, consider texture mapping a checkerboard onto
a quadrilateral subdivided into two triangles, as illustrated in
Figure 10. To map the texture onto the quadrilateral, it is
natural to assign the four vertices of the triangle to the four
corners of the texture. The texture is then linearly interpolated
within each triangle.

As a result, exactly half the texture gets mapped to each
triangle, as illustrated on the right-hand side of Figure 11. The
texture is severely distorted because the two triangles differ so
drastically in size and shape. The result is unexpected
(intuitively and mathematically) for mapping the
checkerboard across a quadrilateral. The result should look

more like the left-hand side of Figure 11.

One possible solution would be to apply
nonlinear interpolation techniques, such as
interpolation using C1 piecewise polynomial
functions,12 but this can be computationally
expensive. An alternative solution to this
problem is to tessellate the quadrilateral
more in both the u and v directions,
assigning the correct vertex (u, v) so that the
linear interpolation error within the smaller
triangles is negligible (the left-hand
quadrilateral in Figure 11 subdivided the
object 15 times in u and v).

IEEE Computer Graphics and Applications September 1996 25

If you continue to use linear interpolation, its
unfortunate limitations require an additional criterion for
good polygon reduction and tessellation algorithms when
texture mapping is involved. For tessellation algorithms,
the poor texture interpolation problem is avoided by
producing evenly sized polygons. For reduction or
simplification algorithms, it is best to consider the
linearity of the (u, v) coordinates before considering
simplification of the region.

Conclusions

We wrote this article in hopes of saving programmers
a lot of time debugging something that is really not a
bug, but instead a limitation of the algorithm. Our
taxonomy is not exhaustive, but it does include many
common rendering problems that we have encountered
over the years.

Most of these limitations can be circumvented with
the proposed solutions. In reality, there are more
workarounds than true solutions. This imbalance
warrants more research into proper solutions to these and
similar problems.

Acknowledgments

Many thanks to Changyaw Wang, Eugene Fiume,
Atjeng Gunawan, and Alan Paeth for proofreading this
article and providing useful suggestions. Thanks also go
to the reviewers for their useful comments.

References

1. T. Whitted, "An Improved Illumination for Shaded Display," Comm.
ACM, Vol. 23, No. 6, June 1980, pp. 343-349.

2. E. Haines, Essential Ray Tracing Algorithms, An Introduction to Ray
Tracing, Academic Press, Cambridge, Mass., 1989, pp. 46-47.

3. J. Amanatides and D. Mitchell, "Some Regularization Problems in
Ray Tracing," Graphics Interface, May 1990, pp. 221-228.

4. J. Snyder and A. Barr, "Ray Tracing Complex Models Containing
Surface Tessellations," Computer Graphics, Vol. 21, No. 4, July
1987, pp. 119-128.

5. H. Gouraud, "Computer Display of Curved Surfaces," IEEE Trans.
Computers, Vol. C-20, No. 6, June 1971, pp. 623-629.

6. B. Phong, "Illumination for Computer Generated Pictures," Comm.
ACM, Vol. 18, No. 6, June 1975, pp. 311-317.

7. J. Blinn, "Models of Light Reflection for Computer Synthesized
Pictures," Computer Graphics, Vol. 11, No. 2, July 1977, pp.
192-198.

8. F. Fisher and A. Woo, "R.E Versus N.H Specular Highlights," in
Graphics Gems IV, P. Heckbert, ed., Academic Press, Cambridge,
Mass., Aug. 1994, pp. 388-400.

9. L. Wolf and D. Kurlander, "Ray Tracing with Polarization
Parameters," IEEE CG&A, Vol. 10, No. 6, Nov. 1990, pp. 44-55.

10. P. Heckbert, "Survey of Texture Mapping," IEEE CG&A, Vol. 11, No.
6, Nov. 1986, pp. 56-67.

11. J. Blinn, "Jim Blinn's Corner: Hyperbolic Interpolation," IEEE CG&A,
Vol. 12, No. 4, July 1992, pp. 89-94.

12. N. Max, "Smooth Appearance for Polygonal Surfaces," Visual
Computer, Vol. 4, 1989, pp. 160-173.

Andrew Woo is senior R&D
manager and has been at Alias
Research (now Alias-Wavefront)
for the last six years, having
worked on Sketch! and
Studio/PowerAnimator His
interests lie in general rendering
issues. Woo received a BS in
1987 for computer science and
commerce, and an MS in 1989
for computer science, both at the

University of Toronto. He is a member of IEEE, ACM, and
CHCCS, and served as treasurer for the 'Toronto Local
Siggraph group from 1989-1992.

Andrew Pearce is senior
architect and has been involved
in rendering at Alias-Wavefront
for more than nine years,
working on Studio/PowerAni-
mator He received a BS in 1984,
and an MS in 1987, in computer
science from the University of
Calgary.

Marc Ouellette is a PhD
candidate at the University of
Toronto in the field of computer
graphics, specializing in
rendering. He has also been
involved in rendering at Alias
Research (now Alias-Wavefront)
for the past two years. Ouellette
received a Bmath in 1987 for

pure mathematics and computer science from the University
of Waterloo, and an MS for computer science in 1989 from
the University of Toronto.

Readers can contact Woo and Pearce at Alias-Wavefront, 110
Richmond Street East, Toronto, Ontario, Canada, M5C 1P1; e-mail
{awoo, pearce}@aw.sgi.com, and Ouellette at 10 King's College
Road, Dept. of Computer Science, University of Toronto, Toronto,
Ontario, Canada, M5S 3G4; e-mail vv1@dgp.toronto.edu.

